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1. Introduction

In 1997, Lee and Mote [1,2] investigated the energetics of one-dimensional translating continua. The term
‘translating’ was used in a generalized sense implying that there is a mass transfer along the continua. A string
and a beam in axial motion, as well as a pipe conveying fluid, were considered as the examples. The main
emphasis in the papers of Lee and Mote was placed on the energy exchange at a boundary of the continua. As
an approach to analysis of this energy exchange, they proposed a very elegant ‘travelling wave method’ based
on comparison of the energy of an incident wave to that of the wave reflected by the boundary. Employing this
method, a conclusion may be drawn on whether the energy is lost or gained at a boundary without explicit
identification of the forces acting on this boundary.

Studying the wave reflection at a boundary, Lee and Mote considered an incident harmonic wave and
stated that ‘the energy DW transferred into the continuum span over one period by wave reflection’ (cited from
[1, p. 724]) is given as

DW ¼ El;r � El;i ¼ ðR� 1ÞEl;i,

where El;r and El;i are the energies contained in one wavelength of the reflected and incident waves,
respectively, and R ¼ El;r=El;i is the ‘energy reflection coefficient’. According to Lee and Mote, if this
coefficient is larger than unity then it is concluded that the energy is gained at the boundary and vice versa.

In this paper it is shown that the energy exchange at a boundary of a dispersive translating continuum
cannot be analysed using the coefficient introduced by Lee and Mote but the following expression for the
‘true’ energy reflection coefficient, Ro, should be used

Ro ¼
El;r

El;i

jkrcgr;rj

jkicgr;ij
¼ R
jcgr;rj

jcph;rj

jcph;ij

jcgr;ij
,

where cph;r and cgr;r are the phase and group velocities of the reflected wave, whereas cph;i and cgr;i are those of
the incident wave. The true reflection coefficient represents the ratio of the energy that is contained in a
differential frequency bandwidth of the reflected pulse to that contained in the same bandwidth of the incident
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pulse. The expression for Ro shows, in particular, that the energy reflection coefficient proposed by Lee and
Mote cannot be used for translating dispersive continua. It is applicable, however, if the continuum is not
translating (jcgr;rj ¼ jcgr;ij and jcph;rj ¼ jcph;ij) or it is translating but not dispersive (jcph;ij ¼ jcgr;ij and
jcph;rj ¼ jcgr;rj).

To obtain the correct expression for the energy reflection coefficient, a pulse of a finite bandwidth is
considered in this paper. Calculating the total energy of this pulse, an expression is derived for the spectral
energy density in the translating continuum. The ratio of this density in the reflected and incident pulses gives
the energy reflection coefficient for a differential frequency band of the pulse. This coefficient could be derived
by considering reflection of a harmonic wave instead of the pulse. In this case, however, one should
additionally account for the difference in the range of wavenumbers, which correspond to the same differential
frequency band in the incident and reflected waves. This has not been done by Lee and Mote, which limited
applicability of their results to non-dispersive systems only.

It is important to note that the energy transport is conventionally studied using the energy flux. For
example, to calculate the total energy of a pulse that propagates in one-dimensional, infinitely long system,
the energy flux through an arbitrary cross section is integrated over time. In this paper, as well as in the
papers of Lee and Mote, the energy is calculated by integrating the energy density of the continuum over
the spatial coordinate. If a continuum is not translating, both approaches give, obviously, the same expression
for the energy. In a translating continuum, however, the energy calculated using the energy flux differs from
that calculated using the energy density. More precisely, this difference exists only in such translating
continua, whose translation velocity is prescribed kinematically. Such kinematic formulation implicitly
implies that there is an external force that maintains the prescribed velocity. This force can act along the
whole extension of the continuum and its work is not necessarily zero. As a result, the energy conservation
equation

qE=qtþ divðF Þ ¼ 0,

where E is the energy density and F is the energy flux does not hold anymore. Instead, the energy flux is
coupled by an equation of the same form to a so-called pseudo-energy G [3]:

qG=qtþ divðF Þ ¼ 0.

The fact that there exists an equation of this form has been used extensively in acoustics for deriving
expressions for the energy flux in various approximations [4–12].

From the short discussion above, it is clear that the energy flux cannot be used straightforwardly for finding
the correct expression for the energy of a travelling pulse in a translating continuum, the velocity of which is
prescribed a priori. That is why integration of the energy density over space is adopted in this paper.

Concluding this introduction, it must be noted that the modification of the reflection coefficient proposed in
this letter is not aimed at undermining the usefulness of the ‘travelling wave method’ but at a correct
description of the energy transfer at a solitary boundary of a dispersive translating continuum.
2. Energy of a pulse travelling in one-dimensional translating continuum

Consider a generalized, uniform, one-dimensional continuum, translating at a constant speed v and
conveying fluid at a constant speed u, both in the positive x-direction. In accordance with [1,2], the total
energy per unit length eðx; tÞ of such a continuum can be written as

eðx; tÞ ¼
1

2
ms

qw

qt
þ v

qw

qx

� �2

þmf

qw

qt
þ u

qw

qx

� �2

þ T
qw

qx

� �2

þ EI
q2w
qx2

� �2
 !

, (1)

where ms is the mass per unit length of the ‘solid part’ of the continuum (for example, the mass of steel per unit
length of a pipe), mf is the mass per unit length of the fluid, EI is the bending stiffness, and T is the axial
tension. This energy can be reduced to that of a translating beam by setting mf ¼ 0 or to the energy of a
tensioned pipe conveying fluid by setting v ¼ 0.
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The equation of the transverse motion of the continuum, which corresponds to the energy density given by
Eq. (1), reads

EI
q4w

qx4
� ðT �mf u2 �msv

2Þ
q2w
qx2
þ 2ðmf uþmsvÞ

q2w
qxqt
þ ðmf þmsÞ

q2w
qt2
¼ 0. (2)

To find the correct expression for the energy transfer at a boundary of the continuum, a propagating pulse
with a finite frequency bandwidth is considered in this development. Assuming that this pulse propagates in
the positive x-direction, the transverse displacement of the continuum corresponding to this pulse can be
represented as

wðx; tÞ ¼

Z 1
�1

~wðoÞ expðiðot� kðoÞxÞÞdo, (3)

where ~wðoÞ is the displacement of the continuum in the frequency domain, o is the radial frequency and k(o)
is the wavenumber, which is real to ensure propagation of all harmonics of the pulse. Substitution of Eq. (3)
into the equation of motion, Eq. (2), yields the following dispersion equation:

k4
ðoÞEI þ k2

ðoÞðT �mf u2 �msv
2Þ þ 2okðoÞðmf uþmsvÞ � o2ðmf þmsÞ ¼ 0 (4)

from which kðoÞ can be derived.
Considering a time moment when the pulse is located so far from the boundaries that it is not disturbed by

their presence, the energy of the pulse E can be computed by integrating the energy density e(x,t) over space
from the minus to plus infinity:

E ¼

Z 1
�1

eðx; tÞdx. (5)

By inserting the energy density of the continuum Eq. (1) into this expression, making use of the
representation of the pulse displacement, Eq. (3), and taking into account that this displacement can also be
represented by its complex conjugate:

wðx; tÞ ¼

Z 1
�1

~wðoÞ expðiðot� kðoÞxÞÞdo ¼
Z 1
�1

~w�ðo1Þ expð�iðo1t� kðo1ÞxÞÞdo1 (6)

the following expression can be obtained:

E ¼
1

2

Z 1
�1

Z 1
�1

Z 1
�1

ðmf þmsÞoo1 þ ðT þmf u2 þmsv
2ÞkðoÞkðo1Þ

�
� 2ðmf uþmsvÞokðo1Þ

þEIk2
ðoÞk2

1ðo1Þ
�
~wðoÞeiðot�kðoÞxÞ ~w�ðo1Þe

�iðo1t�kðo1ÞxÞ dodo1 dx, ð7Þ

The integral over x in Eq. (7) can be evaluated using the following representation of the Dirac delta-function
[13]: Z 1

�1

expð�iaxÞdx ¼ 2pdð�aÞ (8)

to give

E ¼ p
Z 1
�1

Z 1
�1

ðmf þmsÞoo1 þ ðT þmf u2 þmsv
2ÞkðoÞkðo1Þ

�
� 2ðmf uþmsvÞokðo1Þ

þEIk2
ðoÞk2

1ðo1Þ
�
~wðoÞ ~w�ðo1Þe

iðot�o1tÞdðkðoÞ � kðo1ÞÞdodo1. ð9Þ

To calculate the integral over o1 in Eq. (9), the following property of the delta-function can be used [14]:Z 1
�1

dðkðo1Þ � kðoÞÞf ðo1Þdo1 ¼
f ðo1Þ

jdkðo1Þ=do1j

����
kðo1Þ¼kðoÞ

. (10)
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Employing Eq. (10), the expression for the energy of the pulse can be reduced to

E ¼ p
Z 1
�1

ðmf þmsÞo2 þ ðT þmf u2 þmsv
2Þk2
ðoÞ

�
�2ðmf uþmsvÞokðoÞ þ EIk4

ðoÞ
�
jcgrðoÞjj ~wðoÞj2 do, ð11Þ

where the group velocity cgrðoÞ ¼ do=dkðoÞ is introduced.
Eq. (11) can be simplified further by making use of the dispersion equation, Eq. (4), and by noting that the

resulting integrand is an even function of the frequency. This simplification yields

E ¼ 4p
Z 1
0

kðoÞ2ðT þ EIk2
ðoÞÞjcgrðoÞjj ~wðoÞj2 do ¼

Z 1
0

EoðoÞdo, (12)

where Eo is the spectral energy-density of the pulse.
Since the continuum under consideration is linear, the energy exchange at a boundary during

wave reflection can be analysed considering differential bandwidths do of the pulse separately. For each
bandwidth with the central frequency o, the energy transferred into the continuum during wave reflection is
given as

DWo ¼ Eo;r � Eo;i ¼ ðRo � 1ÞEo;i, (13)

where Ro ¼ Eo;r=Eo;i is the ‘true’ energy reflection coefficient. Employing Eq. (12), this coefficient can be
expressed as

Ro ¼
k2

r T þ EIk2
r

� �
jcgr;rj

k2
i T þ EIk2

i

� �
jcgr;ij

r2, (14)

where the subscripts r and i stand for the quantities associated with the reflected and incident waves,
respectively and

r ¼ j ~wr= ~wij (15)

is the amplitude reflection coefficient, which can be found by considering either reflection of a spectral
component of the pulse or that of a harmonic wave to give the same result.

If the reflection coefficient Ro is larger (smaller) than unity throughout the complete frequency band, then
one should conclude that the energy is gained (lost) upon reflection of any pulse from the considered
boundary. If, on the contrary, Ro � 1 is not a sign-definite function of frequency, the energy transfer at the
boundary depends on the amplitude spectrum of a particular pulse. It is important to realize, however, that a
single reflection cannot be considered as a measure of the energy exchange at a boundary. Every one-
dimensional continuum has two boundaries, which reflect any pulse many times. Each reflection in a
dispersive continuum is accompanied by a change of the spectrum of the pulse. The spectral components of the
pulse for which Ro41 increase their contribution to the total energy with each reflection. This implies that if
at a boundary of an undamped continuum the energy reflection Ro is greater than unity at a frequency band
that is present at the initial motion of the continuum, then the energy of the continuum will increase because of
interaction with this boundary (after a sufficiently long time). If the continuum is damped along its length, the
energy gain at a boundary can be overruled by the energy lost during the time that the pulse needs to return to
the boundary. Since the energy loss associated with the distributed damping is usually frequency dependent, it
is very important to predict the frequency bands at which the energy is gained at the boundaries correctly.

In the papers of Lee and Mote [1,2], the energy reflection coefficient R is defined as the ratio of the energy
El;r contained in one wavelength of the reflected wave to the energy El;i contained in one wavelength of the
incident wave. For the continuum, whose energy density is defined by Eq. (1), the coefficient R defined by Lee
and Mote reads

R ¼
kr T þ EIk2

r

� �
ki T þ EIk2

i

� � r2. (16)
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Comparing Eq. (16) with Eq. (14), the following relation can be found between Ro and R:

Ro ¼ R
jkrcgr;rj

jkicgr;ij
¼ R
jcgr;rj

jcph;rj

jcph;ij

jcgr;ij
, (17)

where cph;r ¼ o=kr and cph;i ¼ o=ki are the phase velocities of the reflected and incident waves, respectively. As
discussed above, the conclusion as to whether the energy is gained or lost at a boundary is drawn comparing
the energy reflection coefficient to unity. Since the factor jcgr;r=cph;rjjcgr;i=cph;ij is not necessarily equal to unity,
Eq. (17) clearly shows that this conclusion may be wrong if the coefficient R is employed. In the next section,
an example is presented, in which the use of R leads to a wrong conclusion as to the energy exchange at a
certain frequency band.

3. Energy exchange at a downstream end of a pipe conveying fluid

As an example, the energy transfer at a downstream end of a pipe conveying fluid is considered. The term
‘downstream end’ specifies the side of the pipe where the fluid leaves the pipe. A rotational dashpot is
connected to the downstream end, as sketched in Fig. 1. The equation of motion for a pipe conveying fluid can
be obtained by setting v ¼ 0 in the generalized equation of motion, Eq. (2).

At a downstream end connected to a rotational dashpot, the following two boundary conditions should be satisfied:

wð0; tÞ ¼ 0 and EI
q2w

qx2
¼ �Crd

q2w
qx qt

, (18)

where Crd is the rotational dashpot coefficient.
To find the energy reflection coefficient, a harmonic incident wave can be considered of the following form:

wiðx; tÞ ¼ wie
iðot�kixÞ, (19)

where wi is the complex amplitude of this wave and ki is the real positive root of the dispersion equation, Eq. (4), in
which v ¼ 0. Impinging on the boundary, this wave gives rise to a propagating reflected wave, wpr

r ðx; tÞ, and to an
evanescent reflected wave, wev

r ðx; tÞ. Together with the incident wave these waves form the following pattern of the
transverse deflection of the pipe:

wðx; tÞ ¼ wiðx; tÞ þ wpr
r ðx; tÞ þ wev

r ðx; tÞ ¼ wie
iðot�kixÞ þ wpr

r eiðot�kpr
r xÞ þ wev

r eiðot�kev
r xÞ, (20)

where wpr
r and wev

r are the complex amplitudes of the reflected propagating and reflected evanescent waves, kpr
r is

the real negative root of the dispersion equation, and kev
r is the complex root of this equation with a positive

imaginary part.
Substitution of representation (20) into the two boundary conditions, Eq. (18), results in a system of two

algebraic equations, from which the following expression for the amplitude reflection coefficient r can be found

r ¼
wr

wi

����
���� ¼ EI ðkiÞ

2
� kev

r

� �2� 	
þ Crdo k

pr
i � kev

r

� �
EI kpr

r

� �2
� kev

r

� �2� 	
þ Crdo kpr

r � kev
r

� �
������

������. (21)
x = 0

uf

Crd

Fig. 1. Sketch of a downstream end connected to a rotational dashpot.
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This amplitude reflection coefficient can be substituted into the expression for the energy reflection coefficient
Ro derived in this paper, Eq. (14), and into the expression for the energy reflection coefficient R suggested by
Lee and Mote, Eq. (16). Both Ro and R obtained in this manner are depicted in Fig. 2 as functions of the radial
frequency o. To plot Fig. 2, the following physical parameters of the system were used:

EI ¼ 1:0� 109 Nm2;T ¼ 1:0� 106 N; mf ¼ 1:0� 103 kg=m,

ms ¼ 1:0� 103 kg=m; uf ¼ 5:0m=s; Crd ¼ 5:0� 105 kgm2 s�1 rad�1.

Fig. 2 shows that the two energy reflection coefficients are not equal. Moreover, in the frequency band from
approximately 3–8 rad/s, the use of these coefficients would lead to opposite predictions as to the energy
exchange at the boundary. According to Ro, which is greater than unity in this band, energy is gained, whereas
according to R, which is smaller than unity, energy is lost.
4. Conclusions

The expression for the energy reflection coefficient at a boundary of a translating continuum as introduced
by Lee and Mote [1,2], has been corrected in this contribution. This correction does not influence the
prediction of the stability of a finite-length translating continuum in absence of distributed damping. This is
because the stability of such a continuum is characterized by the multiplication of the energy reflection
coefficients at the downstream and upstream ends, and at these ends the correction ratios jcgr;r=cph;rjjcgr;i=cph;ij

obtained in this paper (see Eq. (17)) are precisely inverse to each other. If distributed damping is present, the
proposed correction can influence the stability prediction. This is because the energy contained in each spectral
component of a pulse that travels along the continuum changes (decreases) during propagation. Therefore, the
energy variation in the continuum cannot be characterized by the multiplication of the energy reflection
coefficients at the two boundaries and accurate prediction of both the magnitude and the frequency
dependence of the energy reflection coefficient at each boundary gains importance.
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